Abstract

The blood-brain barrier (BBB) plays critical roles in maintaining the stability of the brain's internal milieu, providing nutrients for the brain, and preventing toxic materials from the blood from entering the brain. The cellular structure of the BBB is mainly composed of brain microvascular endothelial cells (BMVECs), which are surrounded by astrocytic endfeet that are connected by tight junction proteins, pericytes and astrocytes. Recently, several studies have shown that aberrant increase in intracellular calcium levels in BMVECs lead to cellular metabolic disturbances and subsequent impairment of BBB integrity. Although multiple stresses can lead to intracellular calcium accumulation, inherent protective mechanisms in affected cells are subsequently activated to maintain calcium homeostasis. However, once the increase in intracellular calcium goes beyond a certain threshold, disturbances in cellular structures, protein expression, and the BBB permeability are inevitable. Here, we review recent research on the different factors regulating intracellular calcium concentrations and the mechanisms related to how calcium signaling cascades protect the BMVECs from outside injury. We also consider the potential of calcium signaling regulators as therapeutic targets for modulating intracellular calcium homeostasis and ameliorating BBB disruption in patients with calcium-related pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.