Abstract

This study aimed to explore the mechanism by which calcium (Ca) signal regulated carbohydrate metabolism and exogenous Ca alleviated salinity toxicity. Wheat seedlings were treated with sodium chloride (NaCl, 150mM) alone or combined with 500μM calcium chloride (CaCl2), lanthanum chloride (LaCl3) and/or ethylene glycol tetraacetic acid (EGTA) to primarily analyse carbohydrate starch and sucrose metabolism, as well as Ca signaling components. Treatment with NaCl, EGTA, or LaCl3 alone retarded wheat-seedling growth and decreased starch content accompanied by weakened ribulose-1,5-bisphosphate carboxylation/oxygenase (Rubisco) and Rubisco activase activities, as well as enhanced glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, alpha-amylase, and beta-amylase activities. However, it increased the sucrose level, up-regulated the sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities and TaSPS and TaSuSy expression together, but down-regulated the acid invertase (SA-Inv) and alkaline/neutral invertase (A/N-Inv) activities and TaSA-Inv and TaA/N-Inv expression. Except for unchanged A/N-Inv activities and TaA/N-Inv expression, adding CaCl2 effectively blocked the sodium salt-induced changes of these parameters, which was partially eliminated by EGTA or LaCl3 presence. Furthermore, NaCl treatment also significantly inhibited Ca-dependent protein kinases and Ca2+-ATPase activities and their gene expression in wheat leaves, which was effectively relieved by adding CaCl2. Taken together, CaCl2 application effectively alleviated the sodium salt-induced retardation of wheat-seedling growth by enhancing starch anabolism and sucrose catabolism, and intracellular Ca signal regulated the enzyme activities and gene expression of starch and sucrose metabolism in the leaves of sodium salt-stressed wheat seedlings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call