Abstract

We determined the functional implications of calcium-sensing receptor (CaR)-dependent, Gq- and Gi-coupled signaling cascades, which work in a coordinated manner to regulate activity of nuclear factor of activated T cells and tumor necrosis factor (TNF)-alpha gene transcription that cause expression of cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2) synthesis by rat medullary thick ascending limb cells (mTAL). Interruption of Gq, Gi, protein kinase C (PKC), or calcineurin (CaN) activities abolished CaR-mediated COX-2 expression and PGE2 synthesis. We tested the hypothesis that these pathways contribute to the effects of CaR activation on ion transport in mTAL cells. Ouabain-sensitive O2 consumption, an in vitro correlate of ion transport in the mTAL, was inhibited by approximately 70% in cells treated for 6 h with extracellular Ca2+ (1.2 mM), an effect prevented in mTAL cells transiently transfected with a dominant negative CaR overexpression construct (R796W), indicating that the effect was initiated by stimulation of the CaR. Pretreatment with the COX-2-selective inhibitor, NS-398 (1 microM), reversed CaR-activated decreases in ouabain-sensitive O2 consumption by approximately 60%, but did not alter basal levels of ouabain-sensitive O2 consumption. Similarly, inhibition of either Gq, Gi, PKC, or CaN, which are components of the mechanism associated with CaR-stimulated COX-2-derived PGE2 synthesis, reversed the inhibitory effects of CaR on O2 consumption without affecting basal O2 consumption. Our findings identified signaling elements required for CaR-mediated TNF production that are integral components regulating mTAL function via a mechanism involving COX-2 expression and PGE2 production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call