Abstract
We have investigated 44Ca self-diffusion in natural diopside single crystals (containing ∼2 atomic % Fe) at temperatures up to 1320 °C (i.e. 30 °C below the nominal melting point). Oxygen fugacity was controlled by gaseous mixtures. Diffusion profiles ranging from ∼50 to 500 nm were analysed by Rutherford Back-Scattering Spectrometry (RBS). The present results are complementary to previous studies, and show that in both synthetic (Fe-poor) and natural (Fe-rich) diopside, there are two different diffusion regimes for Ca with a transition at ∼1230±15 °C. Below this temperature diffusion is characterised by an activation enthalpy of ∼284±10 kJ/mol, while at higher temperatures it increases up to ∼1006±75 kJ/mol. These regimes are proposed to be respectively extrinsic and intrinsic. For the intrinsic regime Ca self-diffusion may involve Ca-Frenkel point defects. These are pairs of a vacancy on a M2 site and a calcium cation on an interstitial (normally unoccupied) site. The concentration of such point defects depends only on temperature, and it is especially important at very high temperatures. The activation enthalpy for intrinsic diffusion may represent the half defect formation enthalpy plus the migration enthalpy for movement through interstitial sites. For the extrinsic regime we propose Ca self-diffusion to involve extrinsic interstitial point defects with concentration proportional to (\(\))–0.19±0.03. We suggest that for both regimes, Ca diffusion involves the well known M3 sites in the octahedral layers, as well as sites in the tetrahedral layers, that we call M4. These sites are especially convenient to explain the observed isotropic diffusion. Increasing concentration of Ca-Frenkel point defects may be related to the onset of premelting, which affects the thermodynamic properties of Fe-“free” diopside above 1250 °C. In the light of the present results, premelting is also expected to occur in natural Fe-bearing diopside and it could strongly influence its thermodynamic and transport properties. Subsequently, in deep upper mantle conditions (T≈1250 °C–1300 °C) where premelting could occur, diffusional cation exchanges with surrounding phases and diffusion controlled creep might be facilitated. Finally, our diffusion data support a previous suggestion that electrical conductivity may be electronic rather than ionic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.