Abstract

Liposomes are clinically approved supramolecular drug delivery platforms due to their ability to enhance the pharmacokinetic properties of encapsulated therapeutic agents. A key point for advancing liposomal drug delivery would be to control the timing and location of cargo release to maximize drug potency and minimize side effects. Toward this end, triggered release approaches have been developed that exploit either pathophysiological stimuli (passive release) including pH or external stimuli (active release) such as light. Here, we present a novel approach for triggering release of contents from liposomes driven by increased calcium at target sites, which plays an important role in biology related to certain diseases. In this chapter, we provide detailed experimental procedures for this project, including synthesis of calcium-responsive lipid switch 1, evaluation of dye release properties and selectivity via fluorescence-based release assays as well as studies of morphology changes during release process by dynamic light scattering (DLS) and scanning transmission electron microscopy (STEM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call