Abstract
Osteoblasts in multicellular organisms are sensitive to fluid shear stress (Fss) and respond smartly with versatile patterns of intracellular calcium signal ([Ca2+]i). In this study, a spatial-single cell patterning method was developed by combining micro-contact printing (μCP) and reversible microfluidic chip mounted with vacuum together. Based on this well-defined patterning platform, it's possible to investigate calcium response to Fss modulated by spatial factors, and to characterize multiple calcium patterns quantitatively in terms of cell spacing and cell orientation. The result showed that the Fss-induced [Ca2+]i profiles revealed oscillational signal patterns in non-connected cells such as those in physical-contacted cells. Close-arrayed osteoblasts showed remarkably more [Ca2+]i oscillations than sparse-arrayed cells. The circular shape of the cells was sensitive to oscillational [Ca2+]i as a potential major cause. The consistency of cell orientation and shear stress promoted temporal homogeneity of calcium oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.