Abstract

A major cause of osteoporosis is impaired coupled bone formation. Mechanistically, both osteoclast-derived and bone-derived growth factors have been previously implicated. Here, we hypothesize that the release of bone calcium during osteoclastic bone resorption is essential for coupled bone formation. Osteoclastic resorption increases interstitial fluid calcium locally from the normal 1.8 mM up to 5 mM. MC3T3-E1 osteoprogenitor cells, cultured in a 3.6 mM calcium medium, demonstrated that calcium signaling stimulated osteogenic cell proliferation, differentiation, and migration. Calcium channel knockdown studies implicated calcium channels, Cav1.2, store-operated calcium entry (SOCE), and calcium-sensing receptor (CaSR) in regulating bone cell anabolic activities. MC3T3-E1 cells cultured in a 3.6 mM calcium medium expressed increased gene expression of Wnt signaling and growth factors platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and bone morphogenic protein-2 (BMP 2). Our coupling model of bone formation, the receptor activator of nuclear factor-κΒ ligand (RANKL)-treated mouse calvaria, confirmed the role of calcium signaling in coupled bone formation by exhibiting increased gene expression for osterix and osteocalcin. Critically, dual immunocytochemistry showed that RANKL treatment increased osterix-positive cells and increased fluorescence intensity of Cav1.2 and CaSR protein expression per osterix-positive cell. The above data established that calcium released by osteoclasts contributed to the regulation of coupled bone formation. CRISPR/Cas-9 knockout of Cav1.2 in osteoprogenitor cells cultured in basal calcium medium caused a >80% decrease in the expression of downstream osteogenic genes, emphasizing the large magnitude of the effect of calcium signaling. Thus, calcium signaling is a major regulator of coupled bone formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.