Abstract

Endometrial cancer (EC) is the most common gynecologic cancer with increasing incidence. The dysregulation of intracellular calcium plays a crucial role in cancer progression. However, the relationship between calcium-related genes and prognosis remains unclear. In this study, we aimed to establish a risk model based on calcium-related genes for prognosis prediction in patients with EC. The TCGA-total set was divided into a training set and a testing set (1:1). The four-gene prognostic signature (CACNA2D1, SLC8A1, TRPM4 and CCL2) was established and classified all EC patients into a low-risk or high-risk group. This model was validated in both the testing dataset and the total set. The EC patients with high RiskScores showed significantly shorter overall survival than those with low RiskScores, and this trend was consistent among most subgroups. Moreover, an enrichment analysis confirmed that calcium-related and estrogen-response signalings were significantly enriched in the high-risk group. The knockdown of CACNA2D1 by siRNA or its blocker, amlodipine (AM) inhibited cell proliferation and induced cycle arrest in vitro. The calcium channel blocker AM inhibited cell proliferation and induced cycle arrest in vitro. AM also showed marked tumor inhibition effects in vivo. In summary, the prognostic model constructed by four calcium-related genes can reliably predict the outcomes of EC patients, and a calcium channel blocker, AM, has significant potential for EC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call