Abstract

Endo/sarcoplasmic reticulum stress and the unfolded protein response have been implicated as underlying mechanisms of cell death in many pathological conditions. We have confirmed that long-term exposure to 10µM tunicamycin induced the endo/sarcoplasmic reticulum stress in cultured vascular smooth muscle cells. Since tunicamycin is reported to induce the stress response by inhibiting protein glycosylation, we attempted to investigate a causal link between accumulation of unfolded proteins and dysregulation of cellular calcium transport. However, we found that tunicamycin caused an immediate release of calcium from the endo/sarcoplasmic reticulum, which was sensitive to thapsigargin, and an influx of calcium through the plasma membrane, resulting in a significant increase in cytoplasmic calcium and depletion of endo/sarcoplasmic reticulum calcium. Furthermore, we observed that tunicamycin also induced contraction in intact vascular smooth muscle. By applying established procedures and antagonists, we established that tunicamycin did not directly activate physiological calcium channels, such as store-operated channels, voltage gated calcium channels, ryanodine receptors or inositol trisphosphate receptors. Instead, we found that its effects on cellular calcium fluxes closely resembled those of the known calcium ionophore, ionomycin. We have concluded that tunicamycin directly permeabilizes the plasma membrane and endo/sarcoplasmic reticulum to calcium, and is, therefore, inappropriate for studying the relationship between accumulation of unfolded proteins and endo/sarcoplasmic reticulum calcium dysregulation during the endo/sarcoplasmic reticulum stress response. In contrast, we also report that two other well-known endo/sarcoplasmic reticulum stress inducers, brefeldin A and dithiothreitol, did not exhibit similar increases in calcium permeability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.