Abstract

Calexcitin (CE) is a calcium-binding protein, closely related to sarcoplasmic calcium-binding proteins, that is involved in invertebrate learning and memory. Early reports indicated that both Hermissenda and squid CE also could bind GTP; however, the biochemical significance of GTP-binding and its relationship to calcium binding have remained unclear. Here, we report that the GTPase activity of CE is strongly regulated by calcium. CE possessed a P-loop-like structure near the C-terminal similar to the phosphate-binding regions in other GTP-binding proteins. Site-directed mutagenesis of this region showed that Gly 182, Phe 186 and Gly 187 are required for maximum affinity, suggesting that the GTP-binding motif is G-N-x-x-[FM]-G. CE cloned from Drosophila CNS possessed a similar C-terminal sequence and also bound and hydrolyzed GTP. GTPase activity in Drosophila CE was also strongly regulated by Ca 2+, exhibiting over 23-fold higher activity in the presence of 0.3 μM calcium. Analysis of the conserved protein motifs defines a new family of Ca 2+-binding proteins representing the first example of proteins endowed with both EF-hand calcium binding domains and a C-terminal, P-loop-like GTP-binding motif. These results establish that, in the absence of calcium, both squid and Drosophila CE bind GTP at near-physiological concentrations and hydrolyze GTP at rates comparable to unactivated ras. Calcium functions to increase GTP-binding and GTPase activity in CE, similar to the effect of GTPase activating proteins in other low-MW GTP-binding proteins. CE may, therefore, act as a molecular interface between Ca 2+ cytosolic oscillations and the G protein-coupled signal transduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.