Abstract

The second messenger inositol 1,4,5-trisphosphate (InsP3) functions in large part by liberating calcium ions from intracellular stores. This release process is highly non-linear and shows a regenerative characteristic that allows production of all-or-none calcium spikes which propagate as waves. However, at low concentrations of InsP3 an additional mode of calcium liberation is seen in Xenopus oocytes, transient 'puffs' of cytosolic calcium that last for a few hundred milliseconds and are restricted to within a few micrometres. Puffs are generally of similar size and the amount of calcium released (about 3 x 10(-18) mol) suggests that they arise through the concerted opening of several InsP3-gated calcium release channels. Puff sites are present at a density of about one per 30 microns 2 in the animal hemisphere of the oocyte. Each site functions autonomously, producing puffs at largely random intervals. We conclude that calcium puffs represent 'quantal' units of InsP3-evoked calcium liberation, which may result from local regenerative feedback by cytosolic calcium ions at functionally discrete release sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.