Abstract

γ-Fe2O3 has an excellent low-temperature selective catalytic reduction (SCR) deNOx performance, but its resistance to alkaline earth metal calcium (Ca) is poor. In particular, the detailed mechanism of Ca poisoning on the γ-Fe2O3 catalyst at the atomic level is not clear. Hence, the density functional theory method was used in this research to investigate the influence mechanism of Ca poisoning on the NH3-SCR over the γ-Fe2O3 catalyst surface. The findings reveal that NH3, NO, and O2 molecules can bind to the γ-Fe2O3 (001) surface to generate coordinated ammonia, monodentate nitroso, and adsorption oxygen species, respectively. The main active site is Fe1-top. For the γ-Fe2O3 with Ca poisoning, the Ca atom has a high adsorption energy on the surface of γ-Fe2O3 (001), which covers the catalyst surface and reduces the active sites. The presence of Ca atom decreases the adsorption performance of NH3, while slightly improving the NO and O2 adsorption. In particular, the Ca atom restrains the NH3 activation and NH2 formation, which is detrimental to the NH3-SCR process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call