Abstract
The pollution from industrial processes based on biomass combustion is still an ongoing problem. In the present contribution, the selective catalytic reduction of NO with CO and naphthalene is carried out in the presence of 10% oxygen. The accumulation of alkaline and alkaline earth metals during biomass combustion is here simulated by the addition of calcium to a Cu-impregnated YCeO2-TiO2 support. The results show that a high dispersion of copper is obtained, which is resistant to the accumulation of calcium. Full conversion of CO and naphthalene is achieved above 200 °C, whereas NO conversions of 80, 90, and 87% are obtained for the catalysts with Ca loadings of 2.6, 5.2, and 13%, respectively, at 350 °C. It is proposed that the high activity of the catalysts is ascribed to the formation of Cu-Ox-Ce species and that the accumulation of Ca acts as a barrier to avoid copper sintering. It was found that different forms of carbonate and nitrite/nitrate species form during reaction, coexisting as adsorbed species during the SCR reaction. The selectivity to N2 was almost 100% in all cases, due to the small presence of NO2 in the reactor outlet (no N2O was detected in any conditions).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.