Abstract
Highly porous PTFE membranes are currently being used in facial reconstructive surgery. The present study aims at improving this biomaterial through creating a more bioactive surface by introducing ionic groups onto the surface. The unmodified PTFE membrane does not induce inorganic growth after immersion in simulated body fluid (SBF) for up to 4 weeks. Copolymeric grafting with acrylic acid (AAc) by means of gamma irradiation and subsequent in vitro testing in SBF reveals that this copolymer initially acts as an ion-exchange material and subsequently induces growth of a calcium phosphate phase (Ca/P=2.7) when large amounts (15%) of pAAc are introduced onto the membrane surface. This copolymer is not expected to function well from a biomaterials perspective since SEM showed the pores on the surface to be partly blocked. In contrast, the surface of monoacryloxyethyl phosphate (MAEP)-modified samples is altered at a molecular level only. Yet the modified materials are able to induce calcium phosphate nucleation when the external surface coverage is 44% or above. The initial inorganic growth on these membranes in SBF has a (Ca+Mg)/P ratio of 1.1 (presumably Brushite or Monetite). The secondary growth, possibly calcium-deficient apatite or tricalcium phosphate, has a (Ca+Mg)/P ratio of 1.5. This result is a promising indicator of a bioactive biomaterial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.