Abstract

Additive manufacture is an effective technology to produce complex macrostructures from polymers. Sol-gel is a chemical process that affords multifunctional materials by functionalization of different substrates. This work reports on the use of acrylonitrile-butadiene-styrene polymer (ABS) as starting material to obtain a substrate by additive manufacture. Coating of ABS by the sol-gel methodology generated a multifunctional material. Sols with and without phosphate ions were prepared from silicon and calcium alkoxide. Based on X-ray diffraction patterns, a calcium phosphate crystalline structure emerged on ABS after contact of the substrate with simulated body fluid. Infrared analysis revealed that the peaks of the functionalized substrate shifted, indicating that ABS interacted with the sol-gel coating. According to thermal analysis, the maximum decomposition temperature of the coated samples was 20 oC higher as compared to non-coated ABS. Sol-gel and additive manufacture are important technologies to produce materials with applications in biological medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.