Abstract

ABSTRACT Calcium phosphate cements (CPCs) are used as artificial bone materials. The bone regeneration ability of CPCs can be improved by controlling their composition, porosity, and pore size. This study aims to design novel CPCs with high bone regeneration ability by controlling their microstructure. CPCs with macropores and micropores were prepared by incorporating spherical porous calcium phosphate granules composed of rod-shaped, calcium-deficient hydroxyapatite (CDHA) or plate-shaped octacalcium phosphate (OCP) particles. The granules were mixed with a binder (cement powder) composed primarily of α-tricalcium phosphate. The structure, morphology, compressive strength, porosity, specific surface area, pore size distribution, dissolution characteristics, and effects on cell viabilities were studied for the synthesized samples. The CPCs composed of porous granules had high porosity (~80%) and both macropores and micropores, which are expected to contribute to bone regeneration. The CPCs composed of porous granules showed a smaller specific surface area but a larger dissolution rate than the granule-free samples. The CPC composed of OCP granules showed a higher dissolution rate than the CPCs containing CDHA granules. In the cell culture experiments, the preosteoblasts proliferated on the CPCs, indicating that these CPCs could function as scaffolds for bone regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.