Abstract
Specimens of an unidentified species of the freshwater green alga Spirogyra were found to have abundant cruciate cellular inclusions up to 34 micrometers long. A crystalline nature was shown by birefringence in polarized light. Despite their large size and complex shape, these inclusions did not occur free in the large central vacuole. Instead, they were associated with cytoplasmic strands that spanned the space between gyres of the parietal spiral chloroplasts and with strands that suspended the nucleus in a cytoplasmic embayment of the central vacuole. Some crystals moved directionally along the cytoplasmic strands, and their movement was arrested by cytochalasin B, suggesting that actin microfilaments had a role in crystal movement. Solubility tests showed that the inclusions were composed of calcium oxalate; they dissolved rapidly in weak hydrochloric acid without effervescence, but they were not soluble in concentrated acetic acid or sodium hypochlorite. A colorimetric enzymatic test for oxalate was used to demonstrate microscopically the presence of oxalate and to quantify the amounts. The calcium oxalate crystals were surrounded by a water‐soluble organic matrix that retained the shape of the crystal even after demineralization. Scanning electron microscopy was used to examine the morphology of isolated crystals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.