Abstract

Modified basalt fiber (MBF) is a sustainable material studied as novel wastewater treatment bio-carrier recently. This work studied the effects of calcium modification on the bacterial affinity of modified fiber (Ca-MBF), bacterial community, and nitrogen removal performance. Results showed that Ca-MBF with hydrophilic (62.66°) and positively-charged (7.80 mV) surface accelerated bacterial attachment. Volatile suspended solids on Ca-MBF (5.46 g VSS/g fiber) were increased by 2.61 times after modification, with high bacterial activity when bio-carriers were cultured in activated sludge. Extracellular polymeric substances on Ca-MBF was 4.35 times higher and consisted of more protein. Bio-nests with unique aerobic/anaerobic structure formed on the ultrafine carriers in bioreactor. Ca-MBF bioreactor exhibited total nitrogen removal efficiency above 72.2% and COD removal efficiency above 94.2% with more stable performance than unmodified carrier in long-term treatment using synthetic domestic wastewater.16S rRNA gene sequencing revealed enhanced abundance of nitrifying and denitrifying bacteria in Ca-MBF bio-nest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.