Abstract

Thrombin, the ultimate enzyme in the blood coagulation cascade, has prominent actions on various cells, including neurons. As in platelets, thrombin increases [Ca2+]i mobilization in neurons, and also retracts neurites. Both these effects are mediated through a G protein-coupled, proteolytically activated receptor for thrombin (PAR-1). Prolonged exposure to thrombin kills neurons via apoptosis, that may also involve PAR-1 activation. Increased [Ca2+]i has been a unifying mechanism proposed for cell death in several neurodegenerative diseases. Thrombin-elevated calcium levels may activate intracellular cascades in neurons leading to cell death. Since thrombin mediates its diverse effects on cells through both heterotrimeric and monomeric G proteins, we also explored what effect altering differential G protein coupling would have on the neuronal response to thrombin. We studied calcium mobilization by thrombin in a model motor neuronal cell line, NSC19, using fluorescence image analysis. Confirming effects in other neuronal types, thrombin caused dramatic increases in [Ca2+]i levels, both transiently and after prolonged exposure, which involved activation and cleavage of the PAR-1 receptor. Using enzyme linked immunosorbent assay (ELISA) and dot-blot analysis, we found that the N-terminal fragment of PAR-1 was released into the medium after exposure to thrombin. We confirmed that PAR-1 protein and mRNA expression occurred in motor neurons. We found that cholera toxin inhibited thrombin-mediated Ca2+ influx, pertussis toxin did not significantly alter thrombin action, and lovastatin, a small 21-kDa Ras GTPase (Rho) modulator, showed a tendency to reduce the thrombin effect. These data indicate that thrombin-increased [Ca2+]i, sufficient to trigger cell death in motor neurons, might be approached in vivo by modulating thrombin signaling through PAR-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.