Abstract
The phenomenon of calcium microdomains is firmly established in the field of subcellular physiology. These regions of localized, transient calcium increase are exemplified by the spontaneous ‘sparks’ released through the ryanodine receptor in myocytes, but include subplasmalemmal microdomains, focal calcium oscillations and microdomains enclosed within organelles, such as the endoplasmic reticulum, golgi and mitochondria. Increasing evidence suggests that oxidative stress regulates both the formation and disappearance of microdomains. Calcium release channels and transporters are all modulated by redox state, while several mechanisms that generate oxidative or nitrosative stress are regulated by calcium. Here, we discuss the evidence for the regulation of calcium microdomains by redox state, and, by way of example, demonstrate that the frequency of calcium sparks in cardiomyocytes is increased in response to oxidative stress. We consider the evidence for the existence of analogous microdomains of reactive oxygen and nitrogen species and suggest that the refinement of imaging techniques for these species might lead to similar concepts. The interaction between Ca 2+ microdomains and proteins that modulate their formation results in a complex and dynamic, spatial signaling mechanism, which is likely to be broadly applicable to different cell types, adding new dimensions to the calcium signaling ‘toolkit’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.