Abstract
Calcium leaching from cement hydrates to pore solution increases the porosity and reduces the bonding strength of cement hydrates, accelerating the degradation of concrete. Calcium leaching can be quantified by solid–liquid equilibrium curves, which have been studied in deionized water or ammonium nitrate. The research of solid–liquid equilibrium curve of calcium under sulfate attack is limited and its mechanism is poorly understood. Reported here provide insights into the dissolution process of calcium from cement hydrates exposed to the sodium sulfate solution. The experimental programme examines the effects of sulfate ion concentration and temperature. An external sulfate attack (ESA) model considering the influence of calcium leaching is established and validated. The results show that, compared to deionized water, sulfate ions impact strongly the leaching process. Qualitatively, the dissolution of calcium in cement hydrates is accelerated by increasing the concentration of sulfate ions and decreasing the environmental temperature. Quantitatively, the presence of sulfate ions modifies the equilibrium curve describing calcium leaching in deionized water. In addition, the prediction results of the ESA model considering the influence of calcium leaching are in good agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.