Abstract
Phospholipases and certain of their hydrolytic products are toxic to alveolar epithelial cells. Since many intracellular phospholipases are Ca2+ dependent, we postulated that elevating cytosolic Ca2+ with ionophores might cause epithelial injury via phospholipase activation. Isolated perfused hamster lungs exposed to an Ca2+ ionophore A23187 develop functional evidence of severe epithelial injury. Ultrastructural studies show widespread lysis of type I epithelial cells, with only minimal abnormalities in other lung cells, including the microvascular endothelium. Analysis of whole lung lipid extracts reveals a modest elevation in free arachidonic acid but no changes in other putative products of phospholipase activity. Parallel studies were performed in cultured cells of pulmonary origin. As measured by 51Cr release, A23187 causes substantial cytotoxicity in 3-day-old cultures of rat type II alveolar epithelial cells (RAEC) but not in cultured bovine pulmonary artery endothelial cells (BPAEC). RAEC prelabeled with [14C]stearic acid [( 14C]SA) and [3H]arachidonic acid [( 3H]AA) release radiolabeled free fatty acids (FFA) in response to A23187 in a dose- and time-dependent manner that parallels the cytotoxicity index. Analyses of putative phospholipase products in cells radiolabeled with [14C]SA and [3H]AA, with [14C]choline, or with [14C]ethanolamine suggest that liberation of radiolabeled FFA may be due to several phospholipases but with principal activity being exhibited by a phospholipase C having specificity toward phosphatidylcholine and phosphatidylethanolamine. Prelabeled BPAEC release only minimal quantities of FFA in response to A23187 under the same conditions. These studies demonstrate that elevations of intracytoplasmic Ca2+ are capable of severely and selectively damaging alveolar epithelial cells and that the injury is associated with activation of intracellular phospholipases. These findings may have implications in regard to the pathogenesis of acute lung injury in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.