Abstract

Horse eosinophils preincubated with 3H-labelled acetate and stimulated with the Ca2+ ionophores ionomycin or A23187 form a radioactive compound, which we have shown to be 1-O-alkyl-2-[3H]acetyl-sn-glycero-3-phosphocholine (platelet-activating factor). We could detect no 1-O-acyl-2-[3H]acetyl-glycero-3-phosphocholine in the radioactive fraction. The formation of platelet-activating factor was strongly correlated to the generation of leukotriene C4, the main arachidonate metabolite in horse eosinophils, suggesting that platelet-activating factor and leukotriene C4 have a common precursor pool (1-O-alkyl-2-arachidonyl-glycero-3-phosphocholine) and a common regulation of synthesis. Even though both ionomycin and A23187 are described as Ca2+ ionophores, they have a series of significantly different effects on the eosinophils with respect to formation of platelet-activating factor and leukotriene C4. While A23187 induces an asymptotic maximum of mediator formation at concentrations higher than 20 microM, ionomycin expressed a narrow optimum at 2 microM. The effects of exogenous pH on the release of mediators also differ strongly between the two ionophores: for A23187 the effects are the same for both mediators but when ionomycin is used as stimulant, generation of platelet-activating factor and leukotriene C4 are affected differently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.