Abstract

Ca2+-activated K+ currents and their Ca2+ sources through high-threshold voltage-activated Ca2+ channels were studied using whole-cell patch-clamp recordings from freshly dissociated mouse neocortical pyramidal neurons. In the presence of 4-aminopyridine, depolarizing pulses evoked transient outward currents and several components of sustained currents in a subgroup of cells. The fast transient current and a component of the sustained currents were Ca2+ dependent and sensitive to charybdotoxin and iberiotoxin but not to apamin, suggesting that they were mediated by large-conductance Ca2+-activated K+ (BK) channels. Thus, mouse neocortical neurons contain both inactivating and noninactivating populations of BK channels. Blockade of either L-type Ca2+ channels by nifedipine or N-type Ca2+ channels by omega-conotoxin GVIA reduced the fast transient BK current. These data suggest that the transient BK current is activated by Ca2+ entry through both N- and L-type Ca2+ channels. The physiological role of the fast transient BK current was also examined using current-clamp techniques. Iberiotoxin broadened action potentials (APs), indicating a role of BK current in AP repolarization. Similarly, both the extracellular Ca2+ channel blocker Cd2+ and the intracellular Ca2+ chelator BAPTA blocked the transient component of the outward current and broadened APs in a subgroup of cells. Our results indicate that the outward current in pyramidal mouse neurons is composed of multiple components. A fast transient BK current is activated by Ca2+ entry through high-threshold voltage-activated Ca2+ channels (L- and N-type), and together with other voltage-gated K+ currents, this transient BK current plays a role in AP repolarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call