Abstract
To survive daily damage, the formation of actomyosin ring at the wound edge is required to rapidly close cell wounds. Calcium influx is one of the start signals for these cell wound repair events. Here, we find that the rapid recruitment of all 3 Drosophila calcium-responding and phospholipid-binding Annexin proteins (AnxB9, AnxB10, and AnxB11) to distinct regions around the wound is regulated by the quantity of calcium influx rather than their binding to specific phospholipids. The distinct recruitment patterns of these Annexins regulate the subsequent recruitment of RhoGEF2 and RhoGEF3 through actin stabilization to form a robust actomyosin ring. Surprisingly, while the wound does not close in the absence of calcium influx, we find that reduced calcium influx can still initiate repair processes, albeit leading to severe repair phenotypes. Thus, our results suggest that, in addition to initiating repair events, the quantity of calcium influx is important for precise Annexin spatiotemporal protein recruitment to cell wounds and efficient wound repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.