Abstract

Cellular temperature affects every biochemical reaction, underscoring its critical role in cellular functions. In neurons, temperature not only modulates neurotransmission but is also a key determinant of neurodegenerative diseases. Considering that the brain consumes a disproportionately high amount of energy relative to its weight, neural circuits likely generate a lot of heat, which can increase cytosolic temperature. However, the changes in temperature within neurons and the mechanisms of heat generation during neural excitation remain unclear. In this study, we achieved simultaneous imaging of Ca2+ and temperature using the genetically encoded indicators, B-GECO and B-gTEMP. We then compared the spatiotemporal distributions of Ca2+ responses and temperature. Following neural excitation induced by veratridine, an activator of the voltage-gated Na+ channel, we observed an approximately 2 °C increase in cytosolic temperature occurring 30 s after the Ca2+ response. The temperature elevation was observed in the non-nuclear region, while Ca2+ increased throughout the cell body. Moreover, this temperature increase was suppressed under Ca2+-free conditions and by inhibitors of ATP synthesis. These results indicate that Ca2+-induced upregulation of energy metabolism serves as the heat source during neural excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.