Abstract

Miniature membranes comprised of tetramyristoylcardiolipin (CL) and apolipoprotein (apo) A-I, termed nanodisks (ND), are stable, aqueous soluble, reconstituted high density lipoproteins. When CL ND, but not dimyristoylphosphatidylcholine (PC) ND, were incubated with CaCl2, a concentration dependent increase in sample turbidity occurred, consistent with CL undergoing a bilayer to non-bilayer transition. To assess the cation specificity of this reaction, CL ND were incubated with various mono- and divalent cations. Whereas monovalent cations had no discernable effect, MgCl2 and SrCl2 induced a response similar to CaCl2. When ND were formulated using different weight ratios of CL and PC, those possessing 100% CL or 75% CL remained susceptible to CaCl2 induced sample turbidity development while ND possessing 50% CL displayed reduced susceptibility. ND comprised of 25% CL and 75% PC were unaffected by CaCl2 under these conditions. SDS PAGE analysis of insoluble material generated by incubation of CL ND with CaCl2 revealed that nearly all apoA-I was recovered in the insoluble fraction along with CL. One h after addition of EDTA to CaCl2-treated CL ND, sample clarity was restored. Collectively, the data are consistent with a model wherein Ca2+ forms a bidentate interaction with anionic phosphates in the polar head group of CL. As phosphate group repositioning occurs to maximize Ca2+ binding, CL acyl chains reposition, accentuating the conical shape of CL to an extent that is incompatible with the ND bilayer structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.