Abstract
Local protein synthesis in nerve growth cones has been suggested, but how it is controlled remains largely unknown. We found eukaryotic elongation factor-2 (eEF2), a key component of mRNA translation, in growth cones by immunocytochemistry. While phosphorylated eEF2 was weakly distributed in advancing growth cones, eEF2 phosphorylation was increased by high potassium-evoked calcium influx. In the growth cone, calcium elevation increased eEF2 kinase (EF2K), a calcim–calmodulin-dependent enzyme. Calcium also decreased the level of phosphorylated p70-S6 kinase (S6K), a kinase known to inhibit EF2K. Moreover, calcium elevation decreased total eEF2 in growth cones. Since phosphorylated eEF2 inhibits mRNA translation, calcium elevation appears to inhibit mRNA translation in growth cones by a synergistic mechanism involving regulation of EF2K, S6K, and eEF2 itself. Time-lapse imaging showed that calcium elevation induced growth arrest of neurites. The inhibitory effect on mRNA translation may thus be involved in the regulation of neurite outgrowth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.