Abstract

Plant alpha-type phospholipase D proteins are calcium-dependent, lipolytic enzymes. The morphology of the aggregates of their phospholipid substrate fundamentally defines the interaction between the enzyme and the surface. Here we demonstrate that the Ca(2+)-induced generation of membrane microdomains dramatically activates alpha-type phospholipase D from white cabbage. 500-fold stimulation was observed upon incorporation of 10 mol % 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA) into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles in the presence of Ca(2+) ions. Enhanced association of PLDalpha2 with phospholipid surfaces containing anionic components was indicated by lag phase analysis and film balance measurements. Differential scanning calorimetry showed that the POPA-specific activation correlates with the phase behavior of the POPC/POPA vesicles in the presence of Ca(2+) ions. We conclude from the results that the Ca(2+)-induced formation of POPA microdomains is the crucial parameter that facilitates the binding of PLD to the phospholipid surface and suggest that this effect serves as a cellular switch for controlling PLD activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.