Abstract
Covalently cross-linked multimers of lipocortin I are shown to be present in human epidermoid carcinoma A431 cells treated with epidermal growth factor or the calcium ionophore A23187. This intracellular cross-linking of lipocortin I is suggested to be mediated by the action of tissue transglutaminase, a Ca2(+)-dependent protein cross-linking enzyme. Cross-linking of lipocortin I competes with proteolytic digestion of the protein, and pretreatment of the cells with inhibitors for calpain (Ca2(+)-dependent intracellular protease) markedly enhanced the cross-linking of lipocortin I. Cross-linked lipocortin I is shown to be present in the soluble fraction of A431 cells as well as in the particulate fraction; a 34-kDa fragment of lipocortin I was solubilized successfully by plasmin digestion of the latter fraction. Immunofluorescence microscopy using specific antilipocortin-I antibody showed that cross-linked lipocortin I forms an envelope-like structure, which is not extracted with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) or Triton X-100. In vitro incubation of purified lipocortin I with tissue transglutaminase resulted in the formation of covalently cross-linked lipocortin I dimer, tetramer, and so on. Amine incorporation and cross-linking studies using lipocortin I and its N-terminal truncated derivatives indicated that the cross-linking site is localized within the plasmin-susceptible N-terminal 29 amino acids of lipocortin I. The cross-linking of lipocortin I is shown to be accelerated more than 10 times by the addition of phosphatidylserine vesicles, on which lipocortin I molecules are most likely aligned in a conformation suitable for cross-linking. Collectively, these findings suggest that an increase of intracellular calcium concentration results in the attachment of lipocortin I onto the plasma membrane phospholipids through the C-terminal domain of the molecule where the membrane-bound lipocortin I is cross-linked by the action of tissue transglutaminase through the N-terminal domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.