Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that regulates activation of the c-Jun N-terminal kinase (JNK)- and p38-stress response pathways leading to apoptosis in nucleated cells. We have previously shown that ASK1 is expressed in platelets and regulates agonist-induced platelet activation and thrombosis. However, the mechanism by which platelet agonists cause activation of ASK1 is unknown. Here, we show that in platelets agonist-induced activation of p38 is exclusively dependent on ASK1. Both thrombin and collagen were able to activate ASK1/p38. Activation of ASK1/p38 was strongly dependent on thromboxane A2 (TxA2) and ADP. Agonist-induced ASK1 activation is blocked by inhibition of phospholipase C (PLC) β/γ activity or by chelating intracellular Ca2+. Furthermore, treatment of platelets with thapsigargin or Ca2+ ionophore robustly induced ASK1/p38 activation. In addition, calcium and integrin-binding protein 1 (CIB1), a Ca2+-dependent negative regulator of ASK1, associates with ASK1 in resting platelets and is dissociated upon platelet activation by thrombin. Dissociation of CIB1 corresponds with ASK1 binding to tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) and the autophosphorylation of ASK1 Thr838 within the catalytic domain results in full activation of ASK1. Furthermore, genetic ablation of Cib1 in mice augments agonist-induced Ask1/p38 activation. Together our results suggest that in resting platelets ASK1 is bound to CIB1 at low Ca2+ concentrations. Agonist-induced platelet activation causes an increase in intracellular Ca2+ concentration that leads to the dissociation of CIB1 from ASK1, allowing for proper dimerization through ASK1 N-terminal coiled-coil (NCC) domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.