Abstract
The circadian pacemaker in the retina of the eye of the marine snail Bulla gouldiana was examined using the whole eye in vitro preparation. Phase-response curves were generated to 6-h pulses of a low calcium EGTA solution and to a hyperpolarizing low potassium-low sodium solution. Both treatments yielded similar phase response curves with phase delays in the late subjective night/early subjective day and phase advances in the late subjective day. The similarity of the phase response curves to hyperpolarizing and low calcium solutions and the absence of additivity when both treatments are combined raises the possibility that both treatments affect the underlying pacemaker through a common mechanism. The persistence of phase shifts to low calcium pulses delivered in the presence of depolarizing light suggests that hyperpolarization is not required for low calcium phase shifting. However, it is possible that both treatments act by reducing a transmembrane calcium flux which is postulated to result from the periodic depolarization of the pacemaker cell membrane during the subjective day. Since a transmembrane calcium flux is known to be essential for both light and depolarization-induced phase shifting, we discuss the hypothesis that calcium fluxes play a pivotal role in the entrainment pathway of the circadian pacemaker.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.