Abstract

Many animals are able to detect a plethora of diverse odorants using arrays of odorant receptors located on the olfactory organs. The olfactory information is subsequently encoded and processed by an overlapping, combinatorial activity of neurons forming complex neural circuits in the brain. In order to functionally dissect this neural circuitry, optical recording techniques allow visualizing spatial as well as temporal aspects of odor representations in populations of olfactory neurons. The fruit fl y Drosophila melanogaster has emerged as a highly suitable model system for olfactory research as it allows for the combination of genetic, molecular and physiological analyses. Genes of interest can be ectopically expressed in target regions using different binary transcriptional systems. Thereby, fl uorescent calcium indicators can be expressed to monitor neuronal activity in genetically de fi ned subsets of neurons. In this chapter we describe various available genetically encoded calcium sensors (GECIs) and the binary transcriptional systems available for Drosophila to express these GECIs in olfactory neurons. We will explain step-by-step methods for fl y brain preparation, introduce different odor application devices, and describe the components needed using a wide fi eld or two-photon imaging system including data acquisition and analysis. Overall, this review provides a guideline for optically monitoring the spatiotemporal neuronal activity evoked by odorants in the Drosophila brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.