Abstract
Elevations in cytosolic calcium (Ca2+) drive a wide array of immune cell functions, including cytokine production, gene expression, and cell motility. Live-cell imaging of cells loaded with ratiometric chemical Ca2+ indicators remains the gold standard for visualization and quantification of intracellular Ca2+ signals; ratiometric imaging can be accomplished with dyes such as Fura-2, the combination of Fluo-4 and Fura-Red, or, alternatively, by expressing genetically-encoded Ca2+ indicators (GECI) such as GCaMPs. Here, we describe a detailed protocol for Ca2+ imaging of T cells in vitro using genetically encoded or chemical indicators that can also be applied to a wide variety of cell types. The protocol addresses the challenge of facilitating T cell attachment on various substrates prepared on glass-bottom dishes to enable T cell imaging on an inverted microscope. The protocol also emphasizes cell preparation steps that ensure optimal cell viability - an essential requirement for recording dynamic changes in cytosolic Ca2+ levels - and that ensure reproducibility between multiple samples. Finally, we describe a simple algorithm to analyze single-cell Ca2+ signals over time using Fiji (ImageJ) software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.