Abstract
Abnormal endothelin-1 (ET-1) activity is involved in the pathogenesis of vascular diseases such as essential and pulmonary arterial hypertension, coronary artery disease, and cerebrovascular disease, blockade of ET receptors having shown efficacy in clinical assays and experimental models of hypertension. Augmented Ca2+ influx and changes in Ca2+ sensitization associated with arterial vasoconstriction underlie increased systemic vascular resistance in hypertension. Since peripheral resistance arteries play a key role in blood pressure regulation, we aimed to determine here the specific Ca2+ signaling mechanisms linked to the ET receptor-mediated vasoconstriction in resistance arteries and their selective regulation by protein kinase C (PKC), Rho kinase (RhoK), the phosphatidylinositol 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK). ET-1-induced contraction was mediated by the endothelin ETA receptor with a minor contribution of vascular smooth muscle (VSM) endothelin ETB receptors. ET receptor activation elicited Ca2+ mobilization from intracellular stores, extracellular Ca2+ influx and Ca2+ sensitization associated with contraction in resistance arteries. Vasoconstriction induced by ET-1 was largely dependent on activation of canonical transient receptor potential channel 3 (TRPC3) and extracellular Ca2+ influx through nifedipine-sensitive voltage-dependent Ca2+ channels. PI3K inhibition reduced intracellular Ca2+ mobilization and Ca2+ entry without altering vasoconstriction elicited by ET-1, while PKC has dual opposite actions by enhancing Ca2+ influx associated with contraction, and by inhibiting Ca2+ release from intracellular stores. RhoK was a major determinant of the enhanced sensitivity of the contractile filaments underlying ET-1 vasoconstriction, with also a modulatory positive action on Ca2+ influx and intracellular Ca2+ release. Augmented RhoK and PKC activities are involved in vascular dysfunction in hypertension and vascular complications of insulin-resistant states, and these kinases are thus potential pharmacological targets in vascular diseases in which the ET pathway is impaired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.