Abstract

ObjectivesThis study evaluated the influence of calcium glycerophosphate (CaGP), combined with or without fluoride (F), on the pH and concentrations of F, Ca, and P of dual-species biofilms of Streptococcus mutans and Candida albicans, with or without exposure to sucrose. MethodsThe biofilms (n = 9) received three treatments (72, 78, and 96 h after the start of their formation) at three CaGP concentrations (0.125, 0.25, or 0.5%), with or without F at 500 ppm (as NaF). Solutions containing 500 and 1100 ppm F and artificial saliva were also tested as controls. Biofilm pH was measured, and the concentrations of F, Ca, P, and CaGP were determined (solid and fluid phases). In a parallel experiment, after the third treatment, the treated biofilms were exposed to a sucrose solution, and the pH of the medium, F, Ca, P, and CaGP was determined. Data were subjected to two-way ANOVA, followed by Fisher's LSD test (p < 0.05). ResultsTreatment with CaGP and 500 ppm F led to the highest pH values and F and Ca concentrations in the biofilm biomass, both with and without sucrose exposure. CaGP without F led to higher Ca and P concentrations in the biofilm fluid. ConclusionsCaGP increased F, Ca, and P concentrations in the biofilm, and its presence promoted an increase in the pH of the medium, even after exposure to sucrose. Clinical significanceThe present results elucidate the mechanism by which CaGP and F act on biofilms, further interfering with dental caries dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.