Abstract

Presynaptic ionotropic glutamate receptors modulate transmission at primary afferent synapses in several glutamatergic systems. To test whether primary gustatory afferent fibers express Ca(2+)-permeable AMPA/kainate receptors, we utilized kainate-stimulated uptake of Co(2+) along with immunocytochemistry for the Ca(2+)-binding proteins (CaBPs) calbindin and calretinin to investigate the primary gustatory afferents in goldfish (Carassius auratus). In goldfish, the primary gustatory nucleus (equivalent to the gustatory portion of the nucleus of the solitary tract) includes the vagal lobe, which is a large, laminated structure protruding dorsally from the medulla. Kainate-stimulated uptake of Co(2+) (a measure of Ca(2+)-fluxing glutamate receptors) shows punctate staining distributed in the distinct laminar pattern matching the layers of termination of the primary gustatory afferent fibers. In addition, CaBP immunocytochemistry, which correlates highly with expression of Ca(2+)-permeable AMPA/kainate receptors, shows a laminar pattern of distribution similar to that found with kainate-stimulated cobalt uptake. Nearly all neurons of the vagal gustatory ganglion show Co(2+) uptake and are immunopositive for CaBPs. Transection of the vagus nerve proximal to the ganglion results in loss of such punctate Co(2+) uptake and of punctate CaBP staining as soon as 4 days postlesion. These results are consonant with the presence of Ca(2+)-fluxing glutamate receptors on the presynaptic terminals of primary gustatory terminals, providing an avenue for modulation of primary gustatory input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.