Abstract

Reductions in voltage-gated sodium channel (Nav1.5) function/expression provide a slowed-conduction substrate for cardiac arrhythmias. Nedd4-2, which is activated by calcium, post-translationally modulates Nav1.5. We aim to investigate whether elevated intracellular calcium ([Ca2+ ]i ) reduces Nav1.5 through Nedd4-2 and its role in heart failure (HF). Using a combination of biochemical, electrophysiological, cellular and invivo methods, we tested the effect and mechanism of calcium on Nedd4-2 and in turn Nav1.5. Increased [Ca2+ ]i , following 24-h ionomycin treatment, decreased sodium current (INa ) density and Nav1.5 protein without altering its mRNA in both neonatal rat cardiomyocytes (NRCMs) and HEK 293 cells stably expressing Nav1.5. The calcium chelator BAPTA-AM restored the reduced Nav1.5 and INa in NRCMs pre-treated by ionomycin. Nav1.5 was decreased by Nedd4-2 transfection and further decreased by 6-h ionomycin treatment. These effects were not observed in cells transfected with the catalytically inactive mutant, Nedd4-2 C801S, or with Y1977A-Nav1.5 mutant containing the impaired Nedd4-2 binding motif. Furthermore, elevated [Ca2+ ]i increased Nedd4-2, the interaction between Nedd4-2 and Nav1.5, and Nav1.5 ubiquitination. Nav1.5 protein is decreased, whereas Nedd4-2 is increased in volume-overload HF rat hearts, with increased co-localization of Nav1.5 with ubiquitin or Nedd4-2 as indicated by immunofluorescence staining. BAPTA-AM rescued the reduced Nav1.5 protein, INa and increased Nedd4-2 in hypertrophied NRCMs induced by isoproterenol or angiotensin II. Calcium-mediated increases in Nedd4-2 downregulate Nav1.5 by ubiquitination. Nav1.5 is downregulated and co-localizes with Nedd4-2 and ubiquitin in failing rat heart. These data suggest a role of Nedd4-2 in Nav1.5 downregulation in HF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call