Abstract

ABSTRACTIn developing seeds of bean (Phaseolus vulgaris L.), phloem‐imported assimilates (largely sucrose and potassium) are released from coats to seed apoplasm and subsequently retrieved by the dermal cell complexes of cotyledons. To investigate the mechanisms of K+ uptake by the cotyledons, protoplasts of dermal cell complexes were isolated and whole‐cell currents across their plasma membranes were measured with the patch‐clamp technique. A weakly rectified cation current displaying a voltage‐dependent blockade by external Ca2+ and acidic pH, dominated the conductance of the protoplasts. The P haseolus v ulgaris Cotyledon Dermal‐cell pH and Calcium‐dependent Cation Conductance (Pv‐CD‐pHCaCC) was highly selective for K+ over Ca2+ and Cl–. For K+ current through Pv‐CD‐pHCaCC a sigmoid shaped current–voltage (I–V) curve was observed with negative conductance at voltages between −200 and −140 mV. This negative K+ conductance was Ca2+ dependent. With other univalent cations (Na+, Rb+, NH4+) the currents were smaller and were not Ca2+ dependent. Reversal potentials remained constant when external K+ was substituted with these cations, suggesting that Pv‐CD‐pHCaCC channels were non‐selective. The Pv‐CD‐pHCaCC would provide a pathway for K+ and other univalent cation influx into developing cotyledons. These cation influxes could be co‐ordinated with sucrose influx via pH and Ca2+dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call