Abstract

Gelsolin modulates the actin cytoskeleton in the cytoplasm and clears the circulation of stray filaments. In vitro, gelsolin cleaves, nucleates and caps actin filaments, activities that are calcium-dependent. Both cellular and secreted forms share a sequence of 730 residues comprising six homologous modules termed G1-G6. A disulphide bond is formed in secreted G2, whereas in the cytoplasm it remains reduced. A point mutation in G2 causes an amyloidosis with neurological, ophthalmological and dermatological symptoms. This mutation does not affect the cytoplasmic form, while the secreted form is proteolysed. As a first step towards understanding how gelsolin folds and functions in different cellular compartments, we have characterized at equilibrium the urea-induced unfolding of G1 and G2, with or without calcium and/or disulphide bond. G1 and G2 both exhibit two-state unfolding behaviour and are stabilized by calcium. The disulphide bond also contributes to the stability of G2. In the absence of Ca(2+) and disulphide bond, G2 adopts a non-native conformation, suggesting that folding of G2 in the cytoplasm relies on the presence of surrounding modules or other molecular partners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.