Abstract

The effect of pardaxin, a new excitatory neurotoxin, on neurotransmitter release was tested using purely cholinergic synaptosomes of Torpedo marmorata electric organ. Pardaxin elicited the release of acetylcholine with a biphasic dose dependency. At low concentrations (up to 3 x 10(-7) M), the release was calcium-dependent and synaptosomal structure was well preserved as revealed by electron microscopy and measurements of occluded lactate dehydrogenase activity. At concentrations from 3 x 10(-7) M to 10(-5) M, the pardaxin-induced release of acetylcholine was independent of extracellular calcium, and occluded synaptosomal lactate dehydrogenase activity was lowered, indicating a synaptosomal membrane perturbation. Electron microscopy of 10(-6) M pardaxin-treated synaptosomes revealed nerve terminals depleted of synaptic vesicles and containing cisternae. At higher toxin concentrations (> or = 10(-5) M), there were striking effects on synaptosomal morphology and occluded lactate dehydrogenase activity, suggesting a membrane lytic effect. We conclude that, at low concentrations, this neurotoxin is a promising tool to investigate calcium-dependent mechanisms of neurotransmitter release in the nervous system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.