Abstract
Motor nerve terminals are especially sensitive to an ischemia/reperfusion stress. We applied an in vitro model of this stress, oxygen/glucose deprivation (OGD), to mouse neuromuscular preparations to investigate how Ca2+ contributes to stress-induced motor terminal damage. Measurements using an ionophoretically-injected fluorescent [Ca2+] indicator demonstrated an increase in intra-terminal [Ca2+] following OGD onset. When OGD was terminated within 20–30min of the increase in resting [Ca2+], these changes were sometimes reversible; in other cases [Ca2+] remained high and the terminal degenerated. Endplate innervation was assessed morphometrically following 22min OGD and 120min reoxygenation (32.5°C). Stress-induced motor terminal degeneration was Ca2+-dependent. Median post-stress endplate occupancy was only 26% when the bath contained the normal 1.8mM Ca2+, but increased to 81% when Ca2+ was absent. Removal of Ca2+ only during OGD was more protective than removal of Ca2+ only during reoxygenation. Post-stress endplate occupancy was partially preserved by pharmacological inhibition of various routes of Ca2+ entry into motor terminals, including voltage-dependent Ca2+ channels (ω-agatoxin-IVA, nimodipine) and the plasma membrane Na+/Ca2+ exchanger (KB-R7943). Inhibition of a Ca2+-dependent protease with calpain inhibitor VI was also protective. These results suggest that most of the OGD-induced motor terminal damage is Ca2+-dependent, and that inhibition of Ca2+ entry or Ca2+-dependent proteolysis can reduce this damage. There was no significant difference between the response of wild-type and presymptomatic superoxide dismutase 1 G93A mutant terminals to OGD, or in their response to the protective effect of the tested drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.