Abstract

Voltage-clamp experiments were carried out on intracellularly perfused squid giant axons in a Na-free solution of 100 mM CaCl2+sucrose. The internal solution was 25 mM CsF+sucrose or 100 mM RbF+50mM tetraethylammonium chloride+sucrose. Depolarizing voltage clamp steps produced small inward currents; at large depolarizations the inward current reversed into an outward current. Tetrodotoxin completely blocked the inward current and part of the outward current. No inward current was seen with 100 mM MgCl2+sucrose as internal solution. It is concluded that the inward current is carried by Ca ions moving through the sodium channel. The reversal potential of the tetrodotoxin-sensitive current was +54mV with 25 mM CsF+sucrose inside and +10 mV with 100 mM RbF+50 mM tetraethylammonium chloride+sucrose inside. From the reversal potentials measured with varying external and internal solutions the relative permeabilities of the sodium channel for Ca, Cs and Na were calculated by means of the constant field equations. The results of the voltage-clamp experiments are compared with measurements of the Ca entry in intact axons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.