Abstract
The increase in intracellular calcium concentration elicited by odorant stimulation seems to be involved in down-regulating the responsiveness of olfactory neurons to subsequent stimuli. The present study suggests that this regulatory effect may be due to a calcium-dependent attenuation of the olfactory signalling cascade; the odor-induced cyclic adenosine monophosphate (cAMP) response in olfactory cilia is diminished by calcium in a dose-dependent manner. This reduced cAMP signal is not due to an activation of phosphodiesterases by elevated calcium levels, but rather seems to be mediated by the inhibition of adenylate cyclase by calcium ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.