Abstract
Biomineralization is a chemical reaction that occurs in organisms in which collagen initiates and guides the growth and crystallization of matched apatite minerals. However, there is little known about the demand pattern for calcium salts and collagen needed by biomineralization. In this study, natural bone biomineralization is analyzed, and a novel interplay between calcium concentration and collagen production is observed. Any quantitative change in one of the entities causes a corresponding change in the other. Translocation‐associated membrane protein 2 (TRAM2) is identified as an intermediate factor whose silencing disrupts this relationship and causes poor mineralization. TRAM2 directly interacts with the sarcoplasmic/endoplasmic reticulum calcium ATPase 2b (SERCA2b) and modulates SERCA2b activity to couple calcium enrichment with collagen biosynthesis. Collectively, these findings indicate that osteoblasts can independently and directly regulate the process of biomineralization via this coupling. This knowledge has significant implications for the developmentally inspired design of biomaterials for bone regenerative applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.