Abstract
Whole-cell and single-channel calcium currents were studied using single smooth muscle cells enzymatically-isolated from stomach of Amphiuma tridactylum and from guinea-pig aorta. These cells have a high specific resistance and can sustain calcium action potentials after suppression of potassium currents. Dialyzed Amphiuma smooth muscle cells had calcium currents which were stable for several hours whereas the calcium currents of aortic cells ran down quickly. Single channel calcium currents in cell-attached patches behaved similarly for the two cell types. Calcium channel conductance in 110 mM barium was 12 pS and the mean open time was 1.4 ms at a nominal membrane potential of +10 mV. Exposure of both cell types to BAY K8644 resulted in a dramatic prolongation of the calcium channel open times and a shift in the probability of opening to more negative potentials. Low-threshold calcium channels were not identified in the extensively studied amphibian cells. High-threshold calcium channels therefore appear to be the primary pathway for the calcium influx that produces contraction in these smooth muscle cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.