Abstract

Pregnancy is associated with hemodynamic changes such as reduced vascular resistance and blood pressure. We reported that, during late pregnancy, the activity of voltage-dependent calcium channels (VDCC) is altered in the adrenal cortex and vascular smooth muscle. These observations suggested that the late pregnancy-induced decrease in blood pressure is linked to diminished VDCC function. We attempted to prevent pregnancy-induced reduced blood pressure with a calcium channel activator (CGP 28392) in pregnant rats and to mimic it by administration of a calcium channel blocker (nifedipine) to nonpregnant rats. Treatment was given from the 15th day of gestation for 7 days. The systolic blood pressure of CGP 28392-treated pregnant rats rose transiently for 2 days and then declined toward values of nontreated pregnant controls, although remaining higher. However, nonpregnant rats maintained their high arterial pressure throughout CGP 28392 treatment. Nifedipine lowered the blood pressure in nonpregnant rats to values of nontreated term-pregnant controls. Both agents did not affect body weight, water or food intake, plasma renin activity, and plasma aldosterone or corticosterone levels. Nifedipine and CGP 28392 treatment of nonpregnant and pregnant animals, respectively, did not modify the response of aortic rings to KCl. These results show that VDCC activation caused hypertension, which modified the extent of the decrease in blood pressure at the end of pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.