Abstract

Changes in free intracellular Ca2+ levels provide signals that allow nerve and muscle cells to respond to a host of external stimuli. A major mechanism for elevating the level of intracellular Ca2+ is the influx of extracellular Ca2+ through voltage-dependent channels in the cell membrane. Recent research has yielded new insights into the physiological properties, molecular structure, biochemical regulation, and functional heterogeneity of voltage-dependent Ca2+ channels. In addition, Ca2+ channel antagonist drugs have been developed that are valuable both as probes of channel structure and function and as therapeutic agents. Preliminary evidence suggests that these drugs may be useful in the treatment of diverse neurological disorders, including headache, subarachnoid hemorrhage, stroke, and epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.