Abstract

Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, are inflammatory demyelinating diseases of the central nervous system. The inflammatory attacks lead to glial dysfunction and death, axonal damage, and neurological deficits. Numerous studies in rat suggest that extracellular calcium influx, via voltage-gated calcium channels (VGCC), contributes to white matter damage in acute spinal cord injury and stroke. Our immunohistochemical finding that mouse spinal cord axons display subunits of L-type VGCC also supports this hypothesis. Furthermore, we hypothesized that VGCC also play a role in EAE, and possibly, MS. In our study, administration of the calcium channel blockers (CCB) bepridil and nitrendipine significantly ameliorated EAE in mice, compared with vehicle-treated controls. Spinal cord samples showed reduced inflammation and axonal pathology in bepridil-treated animals. Our data support the hypothesis that calcium influx via VGCC plays a significant role in the development of neurological disability and white matter damage in EAE and MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.