Abstract

Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’s disease (AD). The pathology propagates to neighboring cerebral regions through a prion-like mechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmic reticulum (ER) stress. This study was designed to examine hippocampal ER stress following EC amyloidopathy. Aβ1-42 was bilaterally microinjected into the EC under stereotaxic surgery. Rats were daily treated with 30 μg of isradipine, nimodipine, or placebo over one week. Passive avoidance and novel object recognition (NOR) tasks were performed using shuttle box and NOR test, respectively. GRP78/BiP and CHOP levels were measured in the hippocampal dentate gyrus (DG) by western blot technique. The glutathione (GSH) level and PDI activity were also assessed in the hippocampus by colorimetric spectrophotometer. Aβ treated group developed passive avoidance and novel recognition memory deficit compared to the control group. However, treatment with calcium channel blockers reversed the impairment. BiP and CHOP level increased in the hippocampus following amyloidopathy in the EC. PDI activity and GSH level in the hippocampus decreased in the Aβ treated group, but calcium channel blockers restored them toward the control level. In conclusion, memory impairment due to EC amyloidopathy is associated with ER stress related bio-molecular changes in the hippocampus, and treatment with L-type calcium channel blockers may prevent the changes and ultimately improve cognitive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call